Speeding Up Particle Trajectory Simulations under Moving Force Fields using GPUs
نویسندگان
چکیده
In this paper, we introduce a GPU-based framework for simulating particle trajectories under both static and dynamic force fields. By exploiting the highly parallel nature of the problem and making efficient use of the available hardware, our simulator exhibits a significant speedup over its CPUbased analog. We apply our framework to a specific experimental simulation: the computation of trapping probabilities associated with micron-sized silica beads in optical trapping workbenches. When evaluating large numbers of trajectories (4096), we see approximately a 356 times speedup of the GPU-based simulator over its CPU-based counterpart.
منابع مشابه
Speeding Up Particle Trajectory Simulations Under Moving Force Fields using Graphic Processing Units
In this paper, we introduce a graphic processing unit (GPU)-based framework for simulating particle trajectories under both static and dynamic force fields. By exploiting the highly parallel nature of the problem and making efficient use of the available hardware, our simulator exhibits a significant speedup over its CPU-based analog. We apply our framework to a specific experimental simulation...
متن کاملStrong scaling of general-purpose molecular dynamics simulations on GPUs
Wedescribe a highly optimized implementation ofMPI domain decomposition in aGPU-enabled, generalpurpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports shortrang...
متن کاملACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
The high arithmetic performance and intrinsic parallelism of recent graphical processing units (GPUs) can offer a technological edge for molecular dynamics simulations. ACEMD is a production-class biomolecular dynamics (MD) engine supporting CHARMM and AMBER force fields. Designed specifically for GPUs it is able to achieve supercomputing scale performance of 40 ns/day for all-atom protein syst...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملRadiation from a charged particle and radiation reaction – revisited
We study the electromagnetic fields of an arbitrarily moving charged particle and the radiation reaction on the charged particle using a novel approach. We first show that the fields of an arbitrarily moving charged particle in an inertial frame can be related in a simple manner to the fields of a uniformly accelerated charged particle in its rest frame. Since the latter field is static and eas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011